martes, 12 de abril de 2011

EL EFECTO FOTOELÉCTRICO Y LA FÍSICA CLÁSICA.

 La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:
  • Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.
  • La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.
En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termoelectrones, este es el tipo de emisión que hay en las válvulas electrónicas. Vamos a ver que también se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.

Descripción:

 Sea f la energía mínima necesaria para que un electrón escape del metal. Si el electrón absorbe una energía E, la diferencia E-f, será la energía cinética del electrón emitido.

Einstein explicó las características del efecto fotoeléctrico, suponiendo que cada electrón absorbía un cuanto de radiación o fotón. La energía de un fotón se obtiene multiplicando la constante h de Planck por la frecuencia f de la radiación electromagnética.
E=hf
Si la energía del fotón E, es menor que la energía de arranque f, no hay emisión fotoeléctrica. En caso contrario, si hay emisión y el electrón sale del metal con una energía cinética Ek igual a E-f.
Por otra parte, cuando la placa de área S se ilumina con cierta intensidad I, absorbe una energía en la unidad de tiempo, basta dividir dicha energía entre la cantidad hf para obtener el número de fotones que inciden sobre la placa en la unidad de tiempo. Como cada electrón emitido toma la energía de un único fotón, concluimos que el número de electrones emitidos en la unidad de tiempo es proporcional a la intensidad de la luz que ilumina la placa
Experimento.gif (2763 bytes)


 Las ondas electromagnéticas de luz aportan energía a los electrones del metal hasta que son capaz de arrancarlos del mismo:
1. Cuanto más intensa sea la luz, más energía adquirirán los electrones.
2. Si la luz es muy tenue, habrá que esperar un rato hasta que los electrones adquieren energía suficiente y son arrancados
3. Cualquier luz (longitud de onda) es válida para arrancar electrones.

martes, 5 de abril de 2011

"Radiación el cuerpo negro"

  • La luz emitida por un cuerpo negro escapaba a la explicación de la física clásica.
  • Kirchoff demostró que su espectro depende solo de la temperatura.
  • Leyes empíricas:
    -Ley del desplazamiento de Wien
    -Ley de Stefan-Boltzmann
  • Leyes teóricas:
    -Ley de Rayleigh-Jean.                                                                                                                                                   
Espectro del cuerpo negro
¿Cómo es la distribución de la energía que emite un cuerpo negro con la longitud de onda (o frecuencia) y la temperatura?
Ley de desplazamiento de Wien
La longitud de onda del máximo y la temperatura están relacionadas de forma que:

      A esta relación se la conoce como ley del desplazamiento de Wien.
Donde const = 2897.8 µm K, y T es la temperatura en Kelvin.
 
Las consecuencias de la ley de Wien es que cuanta mayor sea la temperatura de un cuerpo negro menor es la longitud de onda en la cual emite.

El cuerpo negro.

Para entender lo que es un agujero negro empecemos por una estrella como el Sol. El Sol tiene un diámetro de 1.390.000 kilómetros y una masa 330.000 veces superior a la de la Tierra. Teniendo en cuenta esa masa y la distancia de la superficie al centro se demuestra que cualquier objeto colocado sobre la superficie del Sol estaría sometido a una atracción gravitatoria 28 veces superior a la gravedad terrestre en la superficie. Una estrella corriente conserva su tamaño normal gracias al equilibrio entre una altísima temperatura central, y la gigantesca atracción gravitatoria.

Si en un momento dado la temperatura interna desciende, la gravitación se hará dueña de la situación. La estrella comienza a contraerse y a lo largo de ese proceso la estructura atómica del interior se desintegra. En lugar de átomos habrá ahora electrones, protones y neutrones sueltos. La estrella sigue contrayéndose. La estrella es ahora una enana blanca

En determinadas condiciones la atracción gravitatoria se hace demasiado fuerte para ser contrarrestada por la repulsión electrónica. La estrella se contrae de nuevo, obligando a los electrones y protones a combinarse para formar neutrones. La estructura neutrónica contrarresta entonces cualquier contracción y lo que tenemos es una estrella de neutrones, que podría albergar toda la masa de nuestro sol. La gravedad superficial sería 210.000.000.000 veces superior a la que tenemos en la Tierra.
En ese caso ya no hay nada que pueda oponerse al colapso. La estrella puede contraerse hasta un volumen cero y la gravedad superficial aumentar hacia el infinito.

Según la teoría de la relatividad, explicada anteriormente, la luz emitida por una estrella pierde algo de su energía al avanzar contra el campo gravitatorio de la estrella. Cuanto más intenso es el campo, tanto mayor es la pérdida de energía. A lo largo del proceso de colapso de la estrella de neutrones llega un momento en que la luz que emana de la superficie pierde toda su energía y no puede escapar.

Un objeto sometido a una compresión mayor que la de las estrellas de neutrones tendría un campo gravitatorio tan intenso, que cualquier cosa que se aproximara a él quedaría atrapada y no podría volver a salir. Es como si el objeto atrapado hubiera caído en un agujero infinitamente hondo y no cesase nunca de caer. Y como ni siquiera la luz puede escapar, el objeto comprimido será negro. Literalmente, un agujero negro

martes, 15 de marzo de 2011

Universos paralelos.

El derrumbe del determinismo.
Hacia finales del siglo XVIII , el filósofo Francés Pierre Simón de Laplace ( 1749-1827) enunció el principio del determinismo que dice que , si en un momento determinado se conociera las posiciones y movimientos de todas las partículas del universo , podríamos calcular su comportamiento en cualquier momento del futuro.
Pero el principio de la incertidumbre de Heisenberg destruye esa posibilidad , ya que no es posible conocer la posición exacta y el movimiento de una partícula en ningún momento dado.
Con ello cambia nuestra visión del mundo, se ha enriquecido filosóficamente nuestra compresión de la naturaleza y el principio de complementariedad de Bohr implica que la naturaleza del átomo puede ser explicada como partícula o como onda dependiendo de los instrumentos elegidos para su observación, desaparece la paradoja onda-partícula.
 
Conforme a los experimentos realizados , aparentemente nuestra realidad no es local, lo que significa:
1. La interacción no disminuye con la distancia.
2. Puede operar instantáneamente (supera velocidad de la luz).
3. Conecta distintos lugares sin atravesar el espacio.

La lucha de los grandes de la física no tiene aún hoy un vencedor.
Por un lado Albert Einstein , quien sostuvo que "Dios no juega a los dados con su creación ", oponiéndose a las conclusiones de la teoría cuántica, afirmando que la realidad es local, es decir, que no es posible que haya comunicación entre partículas a mayor velocidad que la luz.
Por otro lado tenemos a Niels Bohr , quien sostuvo lo contrario con la interpretación de Copenhague.
Con el experimento de la ranura doble , existe una posiblidad matemática de universos paralelos que operen simultáneamente en donde las diferentes opciones se cumplan.



Los universos paralelos es una hipótesis física, en la que entran en juego la existencia de varios universos o realidades más o menos independientes. El desarrollo de la física cuántica, y la búsqueda de una teoría unificada (teoría cuántica de la gravedad), conjuntamente con el desarrollo de la teoría de cuerdas (explicada en una publicación anterior), han hecho entrever la posibilidad de la existencia de múltiples dimensiones y universos paralelos conformando un Multiuniverso.

TEORÍA DE CUERDAS.

Hasta ahora, los científicos han descrito los componentes básicos de la materia (átomos y partículas subatómicas) como pequeñas esferas o puntos. La Teoría de Cuerdas afirma que el alma de dichas partículas son hilos vibrantes de energía denominados cuerdas. Las cuerdas vibran de unas formas determinadas dotando a las partículas de sus propiedades únicas, como la masa y la carga. El origen de esta teoría se remonta a 1968 cuando el físico Gabrielle Veneziano descubrió que las ecuaciones de Euler, con 200 años de antigüedad, describían la interacción nuclear fuerte, iniciándose así un movimiento que desembocaría, gracias al físico Leonard Susskind, en la aparición de los hilos vibrantes como interpretación de dicha fórmula.



La suma de nuestros conocimientos actuales sobre la composición subatómica del universo se conoce como el modelo estándar de la física de partículas. Este describe tanto a los “ladrillos” fundamentales de los cuales esta constituido el mundo, como las fuerzas a través de las cuales dichos ladrillos interactúan. Existen doce “ladrillos” básicos. Seis de ellos son quarks— y tienen nombres curiosos: arriba, abajo, encanto, extraño, fondo y cima. (Un protón, por ejemplo, está formado por dos quarks arriba y uno abajo.) Los otros seis son leptones— estos incluyen al electrón y a sus dos hermanos más pesados, el muón y el tauón, así como a tres neutrinos.




                            La teoría de las cuerdas puede empearse para abordar los grandes
                                                         problemas de la física.




Existen cuatro fuerzas fundamentales en el universo: la gravedad, el electromagnetismo, y las interacciones débil y fuerte. Cada una de estas es producida por partículas fundamentales que actúan como portadoras de la fuerza. El ejemplo más familiar es el fotón, una partícula de luz, que es la mediadora de las fuerzas electromagnéticas. (Esto quiere decir que, por ejemplo, cuando un imán atrae a un clavo, es porque ambos objetos están intercambiando fotones.) El gravitón es la partícula asociada con la gravedad. La interacción fuerte es producida por ocho partículas conocidas como gluones. (Yo prefiero llamarlos “pegamoides”!) La interacción débil, por último, es transmitida por tres partículas, los bosones W+, W- , y Z.



martes, 8 de marzo de 2011

Relatividad de Éinstein y Física Cuántica

 

La gran aventura de la Física actual consiste en hallar una formulación que combine las dos grandes teorías de la Ciencia: La Relatividad y la Mecánica Cuántica. Cuando se intentan unificar estas teorías, las soluciones se hacen infinitas, es decir, son no renormalizables. Desde Einstein hasta Hawking, pasando por Edward Witten, los intentos han sido inútiles. ¿Será la Teoría de Supercuerdas, una complejísima estructura matemática, la que lo consiga?Hasta que no se logre experimentar con ella, los científicos no pueden darle su aprobación, y se necesita tanta energía para conseguirlo que es más que probable que no se consiga hasta pasados varios siglos.

martes, 22 de febrero de 2011

Métricas de Friedman-Robertson-Walker.

El principio cosmológico restringe los posibles elementos del Universo a gran escala a tres posilidades, que podemos escribir mediante coordenadas comóviles. Las coordenadas comóviles son etiquetas que ponemos a cada galaxia que pueden ser entendidas de tal manera que cada r es asignada a una galaxia que se mueve solidariamente a la expansión del universo y t sería el tiempo transcurrido desde el big bang para dicha galaxia.  De forma general, el elemento puede entonces ser escrito:
ds2 = c2 dt2 - a2(t) R02{ (1- k r2)-1 dr2- r2 [dd 2 + cos2d da 2]}
Donde el parámetro k, puede tomar los valores k = 0 (espacio plano o de curvatura nula), k = +1 tenemos un espacio de tipo esférico cerrado y para k = -1 un espacio abierto de curvatura negativa. R0 es el radio de curvatura que tiene que ser el mismo en cualquier lugar del espacio por la condición de homogeneidad. El radio de curvatura está relacionado con la constante de Hubble H0 y la densidad del universo en función de la densidad crítica W (que incluye las contribuciones de materia, radiación, y densidad de energía del vacío)

  Donde podemos observar las líneas del mundo de los observadores comóviles situados en galaxias típicas que parten de un punto común (el Big Bang), y que son curvas debido a la desaceleración del universo.
 Las líneas grises son líneas de tiempo(t) constante, o dicho de otro modo, líneas para los cuales los observadores que se encuentren en las proximidades mediran la misma edad para el universo.
   
La línea roja representa el cono de luz pasado del observador que se toma como en reposo en este sistema, y es en todo momento tangente a los conos de luz. La distorsión en la forma de los conos de luz de los observadores comóviles se debe al efecto de la expansión. La forma del cono de luz pasado del observador tiene la forma característica de lágrima típica de los modelos del big bang. Ésta se debe a que las galaxias que se encuentra más allá del radio de Hubble en un tiempo comóvil t determinado, se mueven a la velocidad de la luz con respecto al observador. 

Podemos hacer una transformación y situarnos en el punto de vista del observador etiquetado por A 
   
Hay que tener en cuenta que cualquier diagrama espacio-temporal que eligamos para representar un punto de vista del universo siempre estará distorsionado por el efecto inevitable de la elección de coordenadas. Por ejemplo, podemos dividir la distancia física D(t) por a(t) y obtener lineas de mundo perfectamente verticales para todos los observadores (galaxias típicas), aunque con una distorsión de los conos de luz que aumenta a medidad que nos acercamos al Big Bang de tal manera que este pasa de un punto a una línea límite horizontal, tal y como ocurría con los Polos de la Tierra en la proyección plana de la superficie de la Tierra.
 Una imagen que cubre una parte más amplia sería algo así:
 Y si por último estiramos el tiempo en el eje vertícal, de tal manera que recuperemos un cono de luz pasado formado por trayectorias luminosas rectas, obteniendo la siguiente representación.
 
Por último deberíamos recordar que un universo de densidad crítica es espacialmente infinito y representar, para mayor claridad, una sección más amplia  

Este tipo de diagramas es conocido como diagrama espacio-temporal "conforme"
 

Biografías de científicos.

MAX PLANK:

Físico alemán nacido en Kiel, Schleswig, el 23 de abril de 1858 y muerto en Gotinga, el 3 de octubre de 1947. La familia de Plank se trasladó a Munich cuando Max era todavía un niño, y allí recibió su primera enseñanza. En los tiempos universitarios se fue a Berlín, en donde tuvo de profesores a Helmholtz y Kirchhoff. En 1885 fue profesor en la Universidad de Kiel, y en 1889, en Berlín, donde permaneció hasta su retiro en 1926. El trabajo doctoral de Plank versó sobre Termodinámica; en particular se fijó en el problema del cuerpo negro, que absorbe todas las frecuencias de la luz y por eso cuando se calienta las emite.
En 1900 consiguió una ecuación muy simple que describía con precisión la distribución de irradiación de las variadas frecuencias; se basaba en una suposición decisiva: la energía no es divisible indefinidamente. Como la materia, estaba formada por partículas, a las que llamó cuantos, siendo el tamaño de cada uno, para cada radiación electromagnética, directamente proporcional a su frecuencia. A la pequeña constante de proporcionalidad se la llamó, en su honor, constante de Plank, y se reconoce ahora como una de las constantes fundamentales del Universo. 
 Esta teoría era tan revolucionaria que ni el mismo Plank creía completamente en ella, sospechando que podía ser una trampa matemática sin ninguna relación con algo real. Pero cuando Einstein la aplicó al efecto fotoeléctrico y Bohr al modelo atómico con tan excelentes resultados, la teoría cuántica había alcanzado tanta importancia que Plank recibió el Nobel en 1918. En 1930,  En su ancianidad, su celebridad sólo fue superada por la de Einstein; se opuso a Hitler y no prestó ni su prestigio ni su opinión al régimen, viéndose forzado a dimitir de la presidencia de la Sociedad en 1937. Fuerzas americanas le rescataron en 1945 durante los últimos días de confusión antes de la derrota final alemana. 
Le nombraron de nuevo presidente de la Sociedad hasta encontrarle un sucesor y le trasladaron a Gotinga, donde pasó sus dos últimos años estimado y respetado.
 NIELS BOHR:


Físico danés nacido en Copenhague el 7 de octubre de 1885 y muerto en la misma ciudad el 18 de noviembre de 1962. Hijo de un profesor de Fisiología, estudió Física en la Universidad de Copenhague, donde también destacó como un gran jugador de fútbol. Trabajó en Cambridge con Rutherford, volviendo en 1916 a la Universidad de Copenhague como profesor de Física. En 1913 ya tenía ideado su modelo del átomo, que fue el primer intento razonable y con éxito para explicar el espectro de un elemento a partir de la estructura interna de dicho átomo, y usar los datos espectrocópicos para explicar la estructura interna del átomo, utilizando las ideas cuánticas de Plank. Fue incapaz de desarrollar modelos atómicos satisfactorios de elementos más complejos que el hidrógeno, y su modelo primitivo fue perfeccionado por otros científicos, aunque siempre quedó como un híbrido cuantico-clásico. Mantuvo un interminable debate con Einstein sobre los principios de la Mecánica Cuántica, de la que fue un convencido defensor, y los hechos científicos acabaron dándole la razón. 

 En 1940, las tropas de Hitler invadieron Dinamarca, y para evitar ser encarcelado (no cooperó en la ocupación), huyó a Inglaterra, y posteriormente a Estados Unidos, donde intervino en el proyecto de la bomba atómica de Los Alamos, hasta 1945. Trabajó incansablemente en favor del desarrollo de la energía atómica para usos pacíficos, organizando la primera Conferencia de Atomos para la Paz en Ginebra.  


  ERWIN SCHROEDINGER:
 
Físico austríaco nacido en Viena en 1887 y muerto en Viena en 1961. Estudia en la Universidad de Viena anteriormente a la Primera Guerra Mundial, durante la cual fue oficial de artillería en el frente del Sudoeste. Después de la guerra marchó a Alemania, y en 1921 era profesor en la Universidad de Stuttgart. Al conocer la teoría onda- corpúsculo de De Broglie, pensó en introducirla en el modelo atómico de Bohr. En su modelo atómico, el electrón puede estar situado en cualquier órbita alrededor de la cual sus ondas pueden proyectarse en un número exacto de longitudes de onda, produciendo este fenómeno una onda estacionaria; mientras el electrón permanecía en su órbita, no precisaba de luz radiante y de ese modo no violaba las ecuaciones de Maxwell. Más aún, cualquier órbita situada entre dos posibles, donde se requiera un número fraccionario de longitud de onda, no es posible, lo que lleva a la conclusión de órbitas separadas como consecuencia de las propiedades del electrón y no como mera deducción arbitraria de las líneas espectrales. 

Junto con otros científicos, como Dirac y Born, desarrolló la base matemática relacionada con el concepto anterior, construyendo la Mecánica Cuántica sobre la teoría de Plank un cuarto de siglo después de su promulgación, siendo el punto clave la ecuación de onda de Schroedinger. Su trabajo se publicó en 1926, demostrándose posteriormente que la mecánica matricial de Heisenberg, publicada en 1925, era equivalente a la suya. Por ello recibió el Nobel en 1933, compartiéndolo con Dirac. En 1928 haba sucedido a Plank como profesor de Física en la Universidad de Berlín, pero al subir Hitler al poder, marchó a Austria, y de ahí, a Inglaterra, en 1938, al ser absorbido su país por Alemania. En 1940 fue nombrado profesor en Dublín, donde le siguió Dirac, su compañero de fatigas en la Mecánica ondulatoria. En 1956 volvió a Viena, donde vivió el resto de su vida. 




 MAX BORN

Físico alemán-británico, nacido en Breslau, Silesia, (actualmente Wroclaw, Polonia), en 1882, y muerto en Gotinga en 1970. Dedicó su obra principal a forjar las bases matemáticas de la Mecánica Cuántica. Dio una interpretación probabilista al electrón-onda: el aumento y la disminución de las ondas se podía tomar de modo que indicaran el aumento y la disminución de la probabilidad de que el electrón se comportara como si existiera en puntos específicos del paquete de ondas.  

Igual que Schroedinger, Born se marchó de Alemania en cuanto Hitler subió al poder, yéndose a Cambridge en 1933. Allí fue profesor de Física matemática en la Universidad de Edimburgo en 1936, convirtiéndose en ciudadano británico en 1939. Después de su retiro en 1953 volvió a Alemania, y en 1954 fue recompensado con el premio Nobel de Física por sus trabajos sobre Mecánica Cuántica, compartiéndolo con Bothe. 


ERNST JORDAN

Físico teórico alemán, nacido en 1902, considerado como unos de los fundadores de la Mecánica Cuántica. Creció y cursó estudios superiores en Hannover, trasladándose más tarde a Gotinga para hacer el doctorado. Tras conseguir una plaza en la Universidad de Rostock en 1929, se convirtió en profesor de Física de la misma en 1935. A continuación ganó las cátedras de Física de Berlín y Hamburgo. A los 23 años, Jordan colaboró con Born y más tarde con Heisenberg en orden a establecer los fundamentos de la teoría de la Mecánica Cuántica mediante el empleo del cálculo matricial (1926). Posteriormente contribuyó al avance de la Mecánica Cuántica de las interacciones entre electrones y fotones, denominada Electrodinámica cuántica, cuando esta teoría aún se hallaba en sus primeras fases de desarrollo. Otro campo en que Jordan publicó investigaciones de gran interés fue en el de la gravitación.  

 

martes, 15 de febrero de 2011

En el mundo del átomo y sus componentes, todo aparece en montones (quantum = cuanto = montón). La masa, la energía, el momento: nada en este mundo es liso y continuo. Mecánica es el antiguo término para la Ciencia del movimiento, así que Mecánica Cuántica es la rama de la Ciencia dedicada a describir el movimiento de las cosas en el mundo subatómico. Mott la define como la rama de la Física que describe el comportamiento de los electrones en los átomos, en las moléculas y en los sólidos o también como la rama de la Física matemática que permite calcular las propiedades de los átomos


 Sin embargo es algo más que eso: 

La Mecánica Cuántica proporciona el soporte fundamental de toda la Ciencia moderna; sus ecuaciones describen el comportamiento de objetos a escala atómica, proporcionando la única explicación del mundo de lo minúsculo. Sin sus ecuaciones, los científicos no habrían sido capaces de diseñar centrales o bombas nucleares, construir láseres, explicar por qué el Sol se mantiene caliente, la Química estaría aún en una época oscura y no existiría la biología molecular, la ingeniería genética, etc.
 
El mayor problema que tenemos a la hora de ocuparnos de la Mecánica Cuántica procede de nuestra suposición inconsciente de que las cosas se comportarán del mismo modo en el mundo cuántico que como lo hacen en el mundo normal de nuestra experiencia. No hay ninguna razón para esperar que cuando contemplamos objetos muy pequeños u objetos muy veloces, éstos se comporten de la misma forma que lo hacen los objetos con los que estamos familiarizados. La Física Cuántica representa una de las conquistas fundamentales de la Ciencia, mucho más significativa y directa, desde el punto de vista práctico, que la Teoría de la Relatividad.
 
En su mundo, las leyes habituales de la Física dejan de funcionar: los acontecimientos pasan a estar gobernados por probabilidades. La Relatividad y la Mecánica Cuántica constituyen las teorías básicas de la Física moderna; independientemente del grupo de Gotinga, Dirac descubrió que las ecuaciones de la Mecánica Cuántica tienen la misma estructura matemática que las ecuaciones de la Mecánica clásica, y que ésta es un caso particular de la Cuántica correspondiente a grandes números cuánticos o a dar el valor 0 a la constante de Plank.
 
La Mecánica Cuántica es como "una catedral" que se levanta dentro del gran edificio de la Física, de la Ciencia entera. Su construcción arranca con la genial idea de un fundador, Max Plank, un gran seguidor, Bohr, un revolucionario, De Broglie, unos padres, Schroedinger y Heisenberg, un gran matemático, Dirac, y muchos continuadores. Conozcamos, aunque sea brevemente, en la siguiente entrada, las biografías de algunos de estos científicos.

martes, 8 de febrero de 2011

La física cuántica establece que las partículas elementales, constituyentes del átomo, no son elementos esencialmente reales dada su imprecisión existencial. Se pueden comportar como partículas en un momento dado y como ondas en el siguiente o en el anterior. Existen en un espacio y un tiempo que no reconoce el presente, saltan del pasado al futuro, y a la inversa. El presente material sólo es reconocido como una necesidad y una arbitrariedad de la observación humana. No obstante, contradictoriamente, las partículas elementales y las ondas exigen su derecho de ser el fundamento de la materia. Paradigma complejo y de difícil solución. Tanto la física relativista como la cuántica resuelven problemas siempre que no sea simultáneamente. Esta disyuntiva generó el Principio de Incertidumbre propuesto por Heisenberg, que expresa el que no hay ningún elemento que exista en un lugar y en un tiempo determinados. Por tanto, la velocidad y situación de una partícula elemental solamente se puede fijar en un instante dado (por el diagrama de Friedmann), pero nunca se sabrá que sucederá en el instante siguiente, y tampoco si actuará como tal partícula o como función de onda.

Principio de incertidumbre: 
Heisenberg había presentado su propio modelo de átomo renunciando a todo intento de describir el átomo como un compuesto de partículas y ondas. Desistió de  cualquier intento de establecer analogías entre la estructura atómica y la estructura del mundo. Prefirió describir los niveles de energía u órbitas de electrones en términos numéricos puros, sin la menor traza de esquemas. Usó un artificio matemático denominado "matriz" para manipular sus números, el sistema se denominó "mecánica de matriz".
En la búsqueda de una estructura que fuera compatible con la mecánica cuántica Werner Heisenberg descubrió, el «principio de incertidumbre», principio que revelaba una característica distintiva de la mecánica cuántica que no existía en la mecánica de newton.
Según el principio de incertidumbre, ciertos pares de variables físicas, como la posición y el momento (masa por velocidad) de una partícula, no pueden calcularse simultáneamente con la precisión que se quiera. Así, si repetimos el cálculo de la posición y el momento de una partícula cuántica determinada (por ejemplo, un electrón), nos encontramos con que dichos cálculos varían en torno a valores medíos. Estas  variaciones reflejan, pues, nuestra incertidumbre en la determinación de la posición y el momento. Según el principio de incertidumbre, el producto de esas incertidumbres en los cálculos no puede reducirse a cero. Si el electrón obedeciese las leyes de la mecánica newtoniana, las incertidumbres podrían reducirse a cero y la posición y el momento del electrón podrían determinarse con toda precisión. Pero la mecánica cuántica, a diferencia de la newtoniana, sólo nos permite conocer una distribución de la probabilidad de esos cálculos, es decir, es  estadística.
Resumiendo, se puede describir que el principio de incertidumbre postula que en la mecánica cuántica es imposible conocer exactamente, en un instante dado, los valores de dos variables (posición-impulso, energía-tiempo, …, etc.) de forma que una medición precisa de una de ellas implica una total indeterminación en el valor de la otra. Matemáticamente, se expresa para la posición y el impulso en la siguiente forma:

Dx Dy ³ h/2
donde Dx, incertidumbre en la medida de la posición; Dp, incertidumbre en la medida del impulso; para la energía, E, y el tiempo, t, se tiene DE Dt ³  h/2p ; en ambas relaciones el límite de precisión posible viene dado por la constante de Planck, h.



martes, 18 de enero de 2011

Nociones básicas de física cuántica.

A nivel subatómico, las unidades más pequeñas que se han detectado, pueden manifestarse como ondas o como partículas.

·     En 1927, Bohr afirmó que estos comportamientos corpuscular* y ondulatorio no eran propiedades, sino dos representaciones complementarias que dependen de la interacción con el investigador y su instrumento de medida (Principio de complementareidad).
·    En 1929 Heisenberg comprobó que no es posible medir simultáneamente la posición y la velocidad de las partículas subatómicas, ya que las propiedades análogas a la velocidad y la posición, que en el mundo subatómico son más vagas, adquieren consistencia únicamente en el momento de la medición. (Principio de indeterminación)
Esto significa que el observador altera lo observado por el mero hecho de su observación. Lo cual da lugar al supuesto clásico de la realidad objetiva, pero lo más impactante es que no es la unidad subatómica quien “decide” si se manifiesta como onda o como partícula, sino el observador.
·    En 1930 Schröedinger desarrolló una ecuación que predice el comportamiento de una determinada partícula hasta un punto y a partir de ahí describe dos resultados igualmente probables para la misma unidad. En este punto, la ecuación se bifurca, de modo que la unidad tiene dos comportamientos diferentes en un mismo y único tiempo. En determinadas ocasiones, esta ramificación será seguida por otras hasta llegar a cuatro, ocho, dieciséis posibles resultados, ad infinitum. (Función onda partícula)
Esto quiere decir que a nivel subatómico, la materia no existe con seguridad, sino más bien “muestra tendencia a existir”. Estas partículas no son puntos materiales clásicos, de localización precisa, sino que son paquetes de ondas, es decir, una superposición de movimientos en todas direcciones.
 
·   En 1935 el mismo Schröedinger propone un experimento imaginario para poner de manifiesto los efectos del indeterminismo cuántico. Sugiere la colocación de un gato en una caja que contenga cierta cantidad de material radiactivo, junto con un contador capaz de captar el inicio de la radiación, y que al ser estimulado active una corriente mortal para el gato. Puesto que el momento exacto en que se produce la radiación no puede ser calculado, propone parar el experimento justo cuando la probabilidad de la radiación fuera del cincuenta por ciento. A continuación pregunta: ¿Cuál sería el factor determinante para encontrar al gato vivo o muerto?
·   Tanto Bohr como Winger, dicen que la conciencia es la variable oculta que decide qué resultado tiene lugar efectivamente en el acontecimiento considerado. Con lo que, en lugar de “observador”, el investigador es un “participante” dentro de la manifestación de la realidad.
A partir de esto se puede deducir que cada uno de nosotros, lo sepamos o no, estamos creando la realidad que vivimos a través de nuestra conciencia manifestada en pensamientos, palabras y actos, que en última instancia son elecciones de las cuales depende si vamos a encontrar al gato de Sröedinger vivo o muerto.